A Coherent Homotopy Category of 2-track Commutative Cubes

نویسندگان

  • Keith A. Hardie
  • Klaus Heiner Kamps
  • Peter J. Witbooi
چکیده

We consider a category H ⊗ (the homotopy category of homotopy squares) whose objects are homotopy commutative squares of spaces and whose morphisms are cubical diagrams subject to a coherent homotopy relation. The main result characterises the isomorphisms of H ⊗ to be the cube morphisms whose forward arrows are homotopy equivalences. As a first application of the new category we give a direct 2-track theoretic definition of the quaternary Toda bracket operation. Subject classifications : [2000] 18D05, 18B30, 55P10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 4 A homotopy double groupoid of a Hausdorff space II : a van Kampen theorem

This paper is the second in a series exploring the properties of a functor which assigns a homotopy double groupoid with connections to a Hausdorff space. We show that this functor satisfies a version of the van Kampen theorem, and so is a suitable tool for nonabelian, 2-dimensional, local-to-global problems. The methods are analogous to those developed by Brown and Higgins for similar theorems...

متن کامل

A Homotopy Double Groupoid of a Hausdorff Space Ii: a Van Kampen Theorem

This paper is the second in a series exploring the properties of a functor which assigns a homotopy double groupoid with connections to a Hausdorff space. We show that this functor satisfies a version of the van Kampen theorem, and so is a suitable tool for nonabelian, 2-dimensional, local-to-global problems. The methods are analogous to those developed by Brown and Higgins for similar theorems...

متن کامل

Homotopy Coherent Structures

Naturally occurring diagrams in algebraic topology are commutative up to homotopy, but not on the nose. It was quickly realized that very little can be done with this information. Homotopy coherent category theory arose out of a desire to catalog the higher homotopical information required to restore constructibility (or more precisely, functoriality) in such “up to homotopy” settings. The firs...

متن کامل

On lifting diagrams up to homotopy in Frobenius categories

Suppose given a Frobenius category E , i.e. an exact category with a big enough subcategory B of bijectives. Let E := E/B denote its classical homotopy category. For example, we may take E to be the category of complexes C(A) with entries in an additive category A, in which case E is the homotopy category of complexes K(A). Suppose given a finite poset D that satisfies the combinatorial conditi...

متن کامل

A Convenient Category for Directed Homotopy

We propose a convenient category for directed homotopy consisting of preordered topological spaces generated by cubes. Its main advantage is that, like the category of topological spaces generated by simplices suggested by J. H. Smith, it is locally presentable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2011